Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.294
Filtrar
1.
Environ Monit Assess ; 196(5): 462, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642132

RESUMO

Regenerative agricultural practices, i.e. organic and natural farming, are rooted in India since ancient times. However, the high cost of production, lack of organic pest control measures and premium price of organic produces in chemical agriculture encourage natural farming. In the present study, the quality improvement of calcareous soils under organic (OGF) and natural (NTF) management was compared with integrated conventional (ICF) and non-invasive (NIF) farming practices with cotton-sorghum crops over three consecutive years. A total of 23 soil attributes were analyzed at the end of the third cropping cycle and subjected to principal component analysis (PCA) to select a minimum data set (MDS) and obtain a soil quality index (SQI). The attributes soil organic carbon (SOC), available Fe, pH, bulk density (BD) and alkaline phosphatase (APA) were selected as indicators based on correlations and expert opinions on the lime content of the experimental soil. The SQI was improved in the order of OGF (0.89) > NTF(0.69) > ICF(0.48) > NIF(0.05). The contribution of the indicators to SQI was in the order of available Fe (17-44%) > SOC (21-28%), APA (11-36%) > pH (0-22%), and BD (0-20%) regardless of the farming practices. These indicators contribute equally to soil quality under natural (17-22%) and organic (18-22%) farming. The benefit:cost ratio was calculated to show the advantage of natural farming and was in the order of NTF(1.95-2.29), ICF (1.34-1.47), OGF (1.13-1.20) and NIF (0.84-1.47). In overall, the natural farming significantly sustained the soil quality and cost benefit compared to integrated conventional farming practices.


Assuntos
Solo , Sorghum , Solo/química , Carbono/análise , Monitoramento Ambiental , Agricultura , Grão Comestível/química
2.
J Environ Manage ; 357: 120844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579469

RESUMO

The incineration of poultry litter (PL) effectively reduces the volume of waste in line with the United Nations Sustainable Development Goal of "affordable and clean energy". However, mono-incineration is associated with considerable challenges due to the varying moisture, structural and chemical composition and low energy yield. The aim of the present work was to investigate the influence of sweet sorghum bagasse (SS) and pyrolysis oil (PO) on improving the fuel properties of PL and mitigating ash related burdens during incineration. The different biomass feedstocks were produced by combining PL with SS at 0.0% (T0), 25% (T1), 50% (T2), 75% (T3) and compared with 100% SS (T4). In order to achieve high energy potential and low ash deposition, the parallel samples were additionally mixed with 10% PO to improve the energy value. The experimental results show that increasing the proportion of SS and adding PO to the mixtures increases the volatile matter and decreases the moisture and ash content. The addition of PO also increases the carbon and hydrogen content. The use of SS and PO thus increased the values of the ignitability index and apparently also the flammability by 30.0%-49.4% compared to pure PL. SS and PO shifted the HHV of the starting material from 16.90 to 18.78 MJ kg-1. In addition, SS + PO improved the flame volume and red color intensity of the PL blends based on the image analysis method. However, the presence of SS and PO did not sufficiently improve the ash-related index values, which requires further investigation.


Assuntos
Celulose , Aves Domésticas , Sorghum , Animais , Pirólise , Incineração/métodos
3.
Curr Microbiol ; 81(5): 129, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587647

RESUMO

Arbuscular mycorrhizal (AM) fungi are being used as a new generation of biofertilizers to increase plant growth by improving plant nutrition and bio-protection. However, because of the obligatory nature of the plant host, large-scale multiplication of AM propagules is challenging, which limits its applicability. This study evaluates the ability of Burkholderia arboris to increase AM production in soybean mill waste and vermicompost amended by soil-sand mixture planted with sorghum as a host plant. The experiment was conducted in a nursery using a completely randomized design with four inoculation treatments (B. arboris, AM fungi, B. arboris + AM fungi, and control) under sterilized and unsterilized conditions. AM production was investigated microscopically (spore density and root colonization), and biochemically (AM-specific lipid biomarker, 16:1ω5cis derived from neutral lipid fatty acid (NLFA), and phospholipid fatty acid (PLFA) fractions from both soil and roots). Integrating B. arboris with AM fungi in organically amended pots was found to increase AM fungal production by 62.16 spores g-1 soil and root colonization by 80.85%. Biochemical parameters also increased with B. arboris inoculation: 5.49 nmol PLFA g-1 soil and 692.68 nmol PLFA g-1 root and 36.72 nmol NLFA g-1 soil and 3147.57 nmol NLFA g-1 root. Co-inoculation also increased glomalin-related soil protein and root biomass. Principal component analysis (PCA) further supported the higher contribution of B. arboris to AM fungi production under unsterilized conditions. In conclusion, inoculation of AM plant host seeds with B. arboris prior to sowing into organic potting mix could be a promising and cost-effective approach for increasing AM inoculum density for commercial production. Furthermore, efforts need to be made for up-scaling the AM production with different plant hosts and soil-substrate types.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Sorghum , Areia , Solo , Soja , Grão Comestível , Ácidos Graxos , Fungos
4.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629562

RESUMO

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Assuntos
Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Solo , Areia , Ácido Cítrico , Poluentes do Solo/análise , China , Grão Comestível/química
5.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658156

RESUMO

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Assuntos
Acetatos , Alelos , Afídeos , Ciclopentanos , Sorghum , Sorghum/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Afídeos/genética , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Perfilação da Expressão Gênica , Animais , Regulação da Expressão Gênica de Plantas , Variação Genética , Genes myc/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
6.
Int. microbiol ; 27(2): 491-504, Abr. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-232295

RESUMO

As a sugar-rich plant with no impact on global warming and food security, sweet sorghum can be exploited as an alternative source of renewable bioenergy. This study aimed to examine the potential of sweet sorghum juice for the generation of bioethanol using yeast isolated from the juice. The °Brix of sweet sorghum juice was measured using a digital refractometer. Additionally, 18 wild yeasts isolated from fermented sweet sorghum juice were subjected to various biochemical tests to describe them to identify potential yeast for ethanol production. The morphological and biochemical analyses of the yeasts revealed that all of the yeast isolates were most likely members of the genus Saccharomyces. The most ethanol-tolerant yeast isolate SJU14 was employed for sweet sorghum juice fermentation. A completely randomized factorial design was used with various fermentation parameters, primarily pH, temperature, and incubation period. Then ethanol content was determined using a potassium dichromate solution. According to the ANOVA, the highest ethanol content (18.765%) was produced at 30/26 °C, pH 4.5, and incubated for 96 h. Sweet sorghum juice was found to be an excellent source of potent yeasts, which have important industrial properties like the capacity to grow at high ethanol and glucose concentrations. Moreover, it can be utilized as a substitute substrate for the manufacturing of bioethanol production to lessen the environmental threat posed by fossil fuels. Further research is, therefore, recommended to develop strategically valuable applications of sweet sorghum for enhancing the food system and mitigating climate change.(AU)


Assuntos
Humanos , Sorghum/microbiologia , Fermentação , Saccharomyces cerevisiae , Sorghum/química
7.
Planta ; 259(4): 89, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467941

RESUMO

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Assuntos
Milhetes , Sorghum , Humanos , Taiwan , Microscopia Eletrônica de Varredura , Sorghum/metabolismo , Ceras/metabolismo , Folhas de Planta/metabolismo , Epiderme Vegetal/metabolismo
8.
Planta ; 259(4): 91, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480598

RESUMO

MAIN CONCLUSION: The article highlights omics-based interventions in sorghum to combat food and nutritional scarcity in the future. Sorghum with its unique ability to thrive in adverse conditions, has become a tremendous highly nutritive, and multipurpose cereal crop. It is resistant to various types of climatic stressors which will pave its way to a future food crop. Multi-omics refers to the comprehensive study of an organism at multiple molecular levels, including genomics, transcriptomics, proteomics, and metabolomics. Genomic studies have provided insights into the genetic diversity of sorghum and led to the development of genetically improved sorghum. Transcriptomics involves analysing the gene expression patterns in sorghum under various conditions. This knowledge is vital for developing crop varieties with enhanced stress tolerance. Proteomics enables the identification and quantification of the proteins present in sorghum. This approach helps in understanding the functional roles of specific proteins in response to stress and provides insights into metabolic pathways that contribute to resilience and grain production. Metabolomics studies the small molecules, or metabolites, produced by sorghum, provides information about the metabolic pathways that are activated or modified in response to environmental stress. This knowledge can be used to engineer sorghum varieties with improved metabolic efficiency, ultimately leading to better crop yields. In this review, we have focused on various multi-omics approaches, gene expression analysis, and different pathways for the improvement of Sorghum. Applying omics approaches to sorghum research allows for a holistic understanding of its genome function. This knowledge is invaluable for addressing challenges such as climate change, resource limitations, and the need for sustainable agriculture.


Assuntos
Resiliência Psicológica , Sorghum , Grão Comestível , Sorghum/genética , Multiômica , Genômica
9.
Sci Total Environ ; 925: 171825, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513852

RESUMO

Carbon dioxide (CO2) is a primary greenhouse gas that has experienced a surge in atmospheric concentration due to human activities and lifestyles. It is imperative to curtail atmospheric CO2 levels promptly to alleviate the multifaceted impacts of climate warming. The soil serves as a natural reservoir for CO2 sequestration. The scientific premise of this study is that CO2 sequestration in agriculturally relevant, organically-deficient saline soil can be achieved by incorporating alkaline earth silicates. Volcanic ash (VA) was used as a soil amendment for CO2 removal from saline soil by leveraging enhanced silicate rock weathering (ERW). The study pursued two primary objectives: first, we aimed to evaluate the impact of various doses of VA, employed as an amendment for organically-deficient soil, on the growth performance of key cultivated crops (sorghum and mung bean) in inland saline-alkaline agricultural regions of northeastern China. Second, we aimed to assess alterations in the physical properties of the amended soil through mineralogical examinations, utilizing X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) analyses, quantifying the increase in inorganic carbon content within the soil. In the potting tests, mung bean plant height exhibited a noteworthy increase of approximately 41 % with the addition of 10 % VA. Sorghum plant height and aboveground and belowground biomass dry weights increased with VA application across all tested doses. At the optimal VA application rate (20 %), the sorghum achieved a CO2 sequestration rate of 0.14 kg CO2·m-2·month-1. XRD and SEM-EDS analyses confirmed that the augmented inorganic carbon in the VA-amended soils stemmed primarily from calcite accumulation. These findings contribute to elucidating the mechanism underlying VA as an amendment for organically-deficient soils and provide an effective approach for enhancing the carbon sink capacity of saline soils.


Assuntos
Solo , Sorghum , Humanos , Solo/química , Dióxido de Carbono/análise , Erupções Vulcânicas , Agricultura , Tempo (Meteorologia) , Grão Comestível/química , Sequestro de Carbono , Silicatos
10.
Genome Res ; 34(2): 286-299, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479835

RESUMO

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Assuntos
Variação Genética , Sorghum , Sorghum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Polimorfismo de Nucleotídeo Único
11.
Int J Biol Macromol ; 265(Pt 1): 130967, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499122

RESUMO

To enhance the processing suitability of blended flours, this study used 4 kGy E-beam irradiated (EBI) sorghum flour in different ratios blended with wheat flour and further verified the improvement mechanism of the processed products under the optimal ratios. The results suggested that the EBI can mitigate the deterioration of the blend flour farinograph properties while enhancing the gas release during dough fermentation. Under the same addition ratio, the irradiated blend flours showed higher expansion height, gas release, cavitation time, and gas retention coefficient than the control flours. Also, irradiated blend flours retained a gluten network at a higher addition rate (20 %). Moreover, the irradiated blend flours were optimized at 10 % as its pasting and thermal properties were improved. Notably, this ameliorating effect promotes a decrease in hardness and chewiness and an increase in cohesion of the bread cores, presenting better textural attributes and delaying the aging rate during storage. The findings are instructive for applying EBI technology in the manufacture and quality improvement of mixed grain breads and open a new research avenue for processing sorghum staple foods.


Assuntos
Farinha , Sorghum , Farinha/análise , Triticum/química , Sorghum/química , Glutens/química , Pão/análise , Grão Comestível
12.
Chemosphere ; 354: 141722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494004

RESUMO

Nickel (Ni) is an essential element, but it can be phytotoxic in high concentration, which may be caused by high availability in soil solution. The objective of this study was to evaluate the effect of sources and doses of Ni applied to a dystrophic Red Latosol cultivated with sorghum on i) the availability of the metal in the soil; ii) the impact on biological and biochemical properties of the soil; iii) the absorption and distribution in sorghum plants; and iv) crop productivity. The experiment was carried out within a completely randomized design with two nickel sources [nickel(II) nitrate, Ni(NO3)2 and nickel(III) oxide, Ni2O3], three doses (35, 70, and 140 mg Ni kg-1 soil), plus controls without Ni, with 3 replications. The concentrations of Ni in the soil, soil microbial biomass (SMB), basal soil respiration (BSR), metabolic quotient (qCO2), fluorescein diacetate (FDA) hydrolysis, and urease activity were determined. The concentrations of Ni in the leaf diagnostic and in the plant (shoot, root, and grains) were also measured. In the soil, the concentrations of available Ni remained between 0.21 and 54.01 mg Ni kg-1. Ni2O3 contributed very little to the increase in available Ni. SMB and the FDA hydrolysis were not affected by the Ni source or Ni dose, but BSR and qCO2 had significant increase with Ni application rates, suggesting the soil microorganisms faced stress. Soil urease activity was affected by Ni dose but not by Ni source. The dose of Ni as Ni(NO3)2 decreased the metal concentration in the plant, while that of Ni2O3 increased it. Nickel source did not affect dry mass production of the plants, but grain yield was affected in a dose-dependent manner when Ni2O3 was the source of Ni.


Assuntos
Poluentes do Solo , Sorghum , Poluentes do Solo/análise , Níquel/química , Sorghum/metabolismo , Solo/química , Urease/metabolismo , Plantas/metabolismo
13.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522197

RESUMO

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Plásticos , Polietileno , Solo , Rizosfera , Microplásticos , Metais Pesados/toxicidade , Metais Pesados/análise , Enterobacter , Poluentes do Solo/análise
14.
New Phytol ; 242(2): 786-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451101

RESUMO

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Assuntos
Sorghum , Sorghum/metabolismo , Proteínas de Plantas/metabolismo , Flores/fisiologia , Florígeno/metabolismo , Fotoperíodo , Regulação da Expressão Gênica de Plantas
15.
Planta ; 259(5): 100, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536457

RESUMO

MAIN CONCLUSION: SbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation. Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils. However, its molecular mechanisms of Cd-tolerance and -accumulation remain largely unknown. Here, we isolated a YSL family gene SbYS1 from the sweet sorghum genotype with high Cd accumulation ability and the expression of SbYS1 in roots was induced by cadmium. GUS staining experiment exhibited that SbYS1 was expressed in the epidermis and parenchyma tissues of roots. Further subcellular localization analysis suggested that SbYS1 was localized in the endoplasmic reticulum and plasma membrane. Yeast transformed with SbYS1 exhibited a sensitive phenotype compared to the control when exposed to Cd-NA (chelates of cadmium and nicotianamine), indicating that SbYS1 may absorb cadmium in the form of Cd-NA. Arabidopsis overexpressing SbYS1 had a longer root length and accumulated less Cd in roots and shoots. SbWRKY72 bound to the promoter of SbYS1 and negatively regulated the expression of SbYS1. Transgenic Arabidopsis of SbWRKY72 showed higher sensitivity to cadmium and increased cadmium accumulation in roots. Our results provide references for improving the phytoremediation efficiency of sweet sorghum by genetic manipulation in the future.


Assuntos
Arabidopsis , Poluentes do Solo , Sorghum , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Biodegradação Ambiental , Grão Comestível/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
16.
Theor Appl Genet ; 137(3): 72, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446239

RESUMO

KEY MESSAGE: SbMYC2 functions as a key regulator under JA signaling in enhancing drought tolerance of sorghum through direct activating SbGR1. Drought stress is one of the major threats to crop yield. In response to drought stress, functions of basic helix-loop-helix (bHLH) transcription factors (TFs) have been reported in Arabidopsis and rice, but little is known for sorghum. Here, we characterized the function of SbMYC2, a bHLH TF in sorghum, and found that SbMYC2 responded most significantly to PEG-simulated drought stress and JA treatments. Overexpression of SbMYC2 significantly enhanced drought tolerance in Arabidopsis, rice and sorghum. In addition, it reduced reactive oxygen species (ROS) accumulation and increased chlorophyll content in sorghum leaves. While silencing SbMYC2 by virus-induced gene silencing (VIGS) resulted in compromised drought tolerance of sorghum seedlings. Moreover, SbMYC2 can directly activate the expression of GLUTATHIONE-DISULFIDE REDUCTASE gene SbGR1. SbGR1 silencing led to significantly weakened drought tolerance of sorghum, and higher ROS accumulation and lower chlorophyll content in sorghum leaves were detected. In addition, SbMYC2 can interact with SbJAZs, suppressors of JA signaling, and thus can mediate JA signaling to activate SbGR1, thereby regulating sorghum's tolerance to drought stress. Overall, our findings demonstrate that bHLH TF SbMYC2 plays an important role in sorghum's response to drought stress, thus providing one theoretical basis for genetic enhancement of sorghum and even rice.


Assuntos
Arabidopsis , Ciclopentanos , Oryza , Oxilipinas , Sorghum , Resistência à Seca , Sorghum/genética , Espécies Reativas de Oxigênio , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Clorofila , Grão Comestível , Oryza/genética
17.
Appl Microbiol Biotechnol ; 108(1): 257, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456919

RESUMO

Sorghum forage was ensiled for 90 days at two dry matter (DM) contents (27 vs. 39%) without or with Lactiplantibacillus plantarum inoculation. On day 90 of fermentation, silages were sampled to assess the microbial community dynamics and metabolome profile. L. plantarum inoculation improved silage quality, as shown by a lower pH and greater acetic acid concentration. Loss of DM remained unaffected by L. plantarum inoculation but was greater in low- vs. high-DM sorghum silages (14.4 vs. 6.62%). The microbiome analysis revealed that Pseudomonas congelans represented the dominant species of the epiphytic microbiota in both low- and high-DM sorghum forage before ensiling. However, L. buchneri represented the dominant species at the end of ensiling. Ensiling fermentation resulted in distinct metabolic changes in silages with varying DM content. In low-DM silages, ensiling fermentation led to the accumulation of 24 metabolites and a reduction in the relative concentration of 13 metabolites. In high-DM silages, ensiling fermentation resulted in an increase in the relative concentration of 26 metabolites but a decrease in the concentration of 8 metabolites. Compared to non-inoculated silages, L. plantarum inoculation resulted in an increased concentration of 3 metabolites and a reduced concentration of 5 metabolites in low-DM silages. Similarly, in high-DM silages, there was an elevation in the relative concentration of 3 metabolites, while a decrease in 7 other metabolites. Ten metabolites with bio-functional activity were identified, including chrysoeriol, isorhamnetin, petunidin 3-glucoside, apigenin, caffeic acid, gallic acid, p-coumaric acid, trans-cinnamic acid, herniarin, and 3,4-dihydroxy-trans-cinnamate. This study presents a comprehensive analysis of microbiome and metabolome profiling of sorghum forage during ensiling as a function of DM content and L. plantarum inoculation, with a particular emphasis on identifying metabolites that may possess bio-functional properties. KEY POINTS: • DM loss was not different by L. plantarum but higher in low- vs. high-DM silage. • L. buchneri dominated ensiling, regardless of DM level. • 10 metabolites with bio-functional activity were identified.


Assuntos
Microbiota , Sorghum , Silagem , Lactobacillus/metabolismo , Zea mays/metabolismo , Metaboloma , Fermentação
18.
Braz J Biol ; 83: e277437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422256

RESUMO

The use of residues from coffee production to obtain biochar is a sustainable approach, which aims to minimize the environmental impact of these materials. In this study, the effect of adding coffee straw biochar on the physiological quality of lettuce and sorghum seeds was investigated. Thus, the objective of this work was to study the effect of adding different concentrations of coffee biochar in the substrate composition on the physiological quality of lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) seeds. The experimental design used was completely randomized, with five concentrations of biochar (0; 7.5; 15; 30 and 60%), conducted with four replications of 25 seeds. The use of biochar in the concentrations studied does not provide an increase in the average germination percentage and vigor of lettuce and sorghum seeds. The increase in the concentration of biochar caused less seed vigor, suggesting a toxic effect. For seed germination, there was no significant difference between lettuce and sorghum species, regardless of treatment. For the germination speed index, sorghum seeds have higher means, except for the treatment with the addition of 15% coffee straw biochar. Lettuce seeds have higher shoot length averages, except for treatment with 100% commercial substrate. The sorghum seeds have higher mean root length and dry mass than lettuce, regardless of the treatment.


Assuntos
Carvão Vegetal , Germinação , Sorghum , Café , Grão Comestível , Alface , Sementes/fisiologia
19.
Genes (Basel) ; 15(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397200

RESUMO

Quantitative reverse transcription PCR (qRT-PCR) can screen applicable reference genes of species, and reference genes can be used to reduce experimental errors. Sudan grass (Sorghum sudanense (Piper) Stapf) is a high-yield, abiotic-tolerant annual high-quality forage with a wide range of uses. However, no studies have reported reference genes suitable for Sudan grass. Therefore, we found eight candidate reference genes, including UBQ10, HIS3, UBQ9, Isoform0012931, PP2A, ACP2, eIF4α, and Actin, under salt stress (NaCl), drought stress (DR), acid aluminum stress (AlCl3), and methyl jasmonate treatment (MeJA). By using geNorm, NormFinder, BestKeeper, and RefFinder, we ranked eight reference genes on the basis of their expression stabilities. The results indicated that the best reference gene was PP2A under all treatments. eIF4α can be used in CK, MeJA, NaCl, and DR. HIS3 can serve as the best reference gene in AlCl3. Two target genes (Isoform0007606 and Isoform0002387) belong to drought-stress-response genes, and they are highly expressed in Sudan grass according to transcriptome data. They were used to verify eight candidate reference genes under drought stress. The expression trends of the two most stable reference genes were similar, but the trend in expression for Actin showed a significant difference. The reference genes we screened provided valuable guidance for future research on Sudan grass.


Assuntos
Piper , Sorghum , Estresse Fisiológico/genética , Transcrição Reversa , Sorghum/genética , Genes de Plantas , Piper/genética , Actinas/genética , Cloreto de Sódio/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regulação da Expressão Gênica de Plantas
20.
Bull Environ Contam Toxicol ; 112(2): 35, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353745

RESUMO

This work evaluated the biochemical responses of the endogeic earthworm Balanteodrilus extremus exposed for 14 and 48 days (d) to soils collected from two tropical agricultural systems: maize-sorghum (MS) and soybean-sorghum (SS). A soil without agricultural management (WAM) and the use of pesticides was selected as a reference. The presence of organochlorine (OC) and organophosphate (OP) pesticide residues was quantified in MS and SS soils. Biomarkers of detoxification [glutathione S transferase (GST)], neurotoxicity [acetylcholinesterase (AChE)] and oxidative stress [superoxide dismutase (SOD), catalase (CAT) and lipoperoxidation (LPO)] were evaluated in B. extremus. The concentration of OP pesticide residues was higher in SS than in MS. Activity of AChE in B. extremus exposed to SS soil for 14 d was significantly more inhibited (78%) than in MS soil (68%). B. extremus has been shown to be a good bioindicator of contaminated soils in tropical regions.


Assuntos
Ascomicetos , Oligoquetos , Resíduos de Praguicidas , Sorghum , Animais , Solo , Acetilcolinesterase , Agricultura , Grão Comestível , Soja , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...